If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x+x^2=26
We move all terms to the left:
3x+x^2-(26)=0
a = 1; b = 3; c = -26;
Δ = b2-4ac
Δ = 32-4·1·(-26)
Δ = 113
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(3)-\sqrt{113}}{2*1}=\frac{-3-\sqrt{113}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(3)+\sqrt{113}}{2*1}=\frac{-3+\sqrt{113}}{2} $
| 20c²+13c-15=0 | | 12/13=156/x | | 1.7/x=4.59 | | 8(q−83)=96 | | 96=4(g+17) | | –3(d+71)=48 | | y4− 1=4 | | 8(2x-8)=16x-64 | | –3d(+71)=48 | | 4z+34=98 | | 4x+3x+13=0- | | 6c+4-c=2 | | 5j-32=58 | | 98=18+8v | | -x-5+3x+1=0- | | 15+9b=33 | | 5n+2=3n-6 | | 8(n-7)=-16 | | 3x²-75x=0 | | 3x+x-1=46 | | 4+9v=-5 | | –5(m–5)=10 | | 10x+2(x-6)=3(4x-4 | | -6.85+m/4=-1 | | -3(n+5)=-9 | | 5x^2+30x+100=0 | | (14x-8)-5=9x+2 | | ?5=2/5a | | 20+(-y-10)+4y=180 | | 8y=133 | | 2^n+√144=20 | | 3^3b-3^b=672 |